Sector

SHARE

Digital & IT

Discrete Structures

This provides a clear, accessible introduction to discrete mathematics that combines theory with practicality. Discrete mathematics describes processes that consist of a sequence of individual steps, as compared to forms of mathematics that describe processes that change in a continuous manner. The major topics we cover in this course are single-membership sets, mathematical logic, induction, and proofs. We will also discuss counting theory, probability, recursion, graphs, trees, and finite-state machines.

Understanding the terms “single-membership” and “discrete” are important as you begin this course. “Single-Membership” refers to something that is grouped within only one set and systems that can be in only one state at a time, at the same hierarchical level. Similarly, “discrete” refers to that which is individually separate and distinct. Each of anything can be in only one set or one state at a time. This is a result of Aristotelian philosophy, which holds that there are only two values of membership, 0 or 1. An answer is either no or yes, false or true, 0% membership or 100% membership, entirely in a set or state, or entirely not. There are no shades of grey. This is much different from Fuzzy Logic (due to Lofti Zadeh), where something can be a member of any set or in any state to some degree or another. Degrees of membership are measured in percentage and those percentages add to 100%. But, even in Fuzzy Logic (multiple-membership, multiple-state, non-discrete logic), one ultimately comes to a crisp decision so that some specific action is taken, or not. For this course, it is enough to understand the difference between single-state and multi-state logic.

As you progress through the units of this course, you will develop the mathematical foundation necessary for more specialized subjects in computer science, including data structures, algorithms, cryptology, and compiler design. Upon completion of this course, you will have the mathematical know-how required for an in-depth study of the science and technology that is foundational to the computer age.

 

Lorem ipsum dolor sit amet

Consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Excepteur sint occaecat

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur

Related Links

Contact Details

Saylor Academy

1875 Connecticut Ave NW,
Washington,
DC 20009,
United States

Resources